
SUPPLEMENTARY NOTE

1. LD Score in an Unstructured Sample

1.1. Model. We model phenotypes as generated from the equation

(1.1) φ = Xβ + ϵ

where φ is an N × 1 vector of (quantitative) phenotypes, X is an N ×M matrix
of genotypes normalized to mean zero and variance one1 (we ignore the distinction
between normalizing and centering in our sample and in the population since the
error so introduced has expectation zero and O(1/N) variance), β is an M × 1
vector of per-normalized-genotype effect sizes and ϵ is an N × 1 vector of environ-
mental effects. We describe a model where all three variables on the right side of
equation 1.1 are random. In this model, E[ϵ] = 0 , Var[ϵ] = (1− h2

g)I, E[β] = 0 and
Var[β] = (h2

g/M)I.2To model genotypes, we assume that the genotype at variant j
for individual i is independent of other individuals’ genotypes, but we do incorpo-
rate linkage disequilibrium into the model: define rjk := E[XijXik], which does not
depend on i. Finally, we assume that X, β and ϵ are mutually independent. We will
relax the assumption that environmental effects are independent of genotype when
we model population stratification in §2.2.

1.2. Relationship between LD and χ2-Statistics. For each variant j = 1, . . . ,M ,
we compute least-squares estimates of effect size β̂j := XT

j φ/N (where Xj denotes

the N × 1 vector of genotypes at variant j) and χ2-statistics χ2
j := N β̂2

j . In this
section, we compute E[χ2

j ] with the expectation taken over random X , β, and ϵ.

Proposition 1. Define the LD Score of variant j as

(1.2) ℓj :=
M
∑

k=1

r2jk.

Under the model described in §1.1, the expected χ2-statistic of variant j is

(1.3) E[χ2
j ] ≈

Nh2
g

M
ℓj + 1.

1Note that the normalization to variance hides an implicit assumption that rare SNPs have
larger effect sizes. We show via simulation in the main text that LD Score regression, as an
inference procedure, is not particularly sensitive to this assumption.

2This is almost the same assumption made in [1] (the difference is that they assume i.i.d.

per-normalized genotype effect sizes for genotyped SNPs, and we make this assumption for all
SNPs). If one wishes to specify a different variance structure for the per-normalized-genotype
effect sizes, e.g., Var[βj] = fj , then all results presented herein hold with normalized genotypes

(Gij − 2pj)/
√

fj replacing the usual (Gij − 2pj)/
√

2pj(1 − pj), where Gij denotes additively

coded (0,1,2) genotypes.
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Proof. Since E[β̂j ] = 0, observe that E[χ2
j ] = N ·Var[β̂j ]. We will obtain the variance

of β̂j via the law of total variance:

Var[β̂j ] = E[Var[β̂j |X ]] + Var[E[β̂j |X ]](1.4)

= E[Var[β̂j |X ]],

where the second line follows from the fact that E[β̂j |X ] = 0, irrespective of X .
First,

Var[β̂j |X ] =
1

N2
Var[XT

j φ |X ](1.5)

=
1

N2
XT

j Var[φ |X ]Xj

=
1

N2

(

h2
g

M
XT

j XXTXj +N(1− h2
g)

)

.

We can write the term on the left in terms of more familiar quantities as

(1.6)
1

N2
XT

j XXTXj =
M
∑

k=1

r̃2jk,

where r̃jk :=
1

N

N
∑

i=1

XijXik denotes the sample correlation between additively-coded

genotypes at variants j and k. Since

(1.7) E[r̃2jk ] ≈ r2jk + (1− r2jk)/N,

(where the approximation sign hides terms of order O(1/N2) and smaller; one can
obtain this approximation via e.g., the δ-method),

(1.8) E

[

M
∑

k=1

r̃2jk

]

≈ ℓj +
M − ℓj

N
.

Thus,

E[χ2
j ] ≈

N(1− 1/N)h2
g

M
ℓj + 1(1.9)

≈
Nh2

g

M
ℓj + 1,

Values of N (study sample size) considered in the main text generally fall between
104 and 105, so the approximation 1− 1/N ≈ 1 is appropriate. !

2. LD Score with Population Stratification

2.1. Model of Population Structure. We model population structure induced
by genetic drift in a mixture of two populations in equal proportions as follows: we
draw a matrix of normalized genotypes X consisting of N/2 samples from popu-
lation 1 and N/2 samples from population 2 (we will use the notation i ∈ Pm for
m ∈ {1, 2} to denote that individual i is a member of population m), subject to the
following constraints: Var[Xij ] = 1, E[Xij | i ∈ P1] = fj and E[Xij | i ∈ P2] = −fj.
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We model the drift term f as f ∼ N(0, FSTV ), where V is a correlation matrix3

and FST is Wright’s FST [2]. We postpone discussion of the off-diagonal entries
of V (which might depend on LD in the ancestral population or recombination
rates) until §2.2. Finally, if ℓj,m denotes the LD Score of variant j in population
m, we assume that ℓj,1 ≈ ℓj,2 =: ℓj. The last assumption warrants a brief expla-
nation. Assuming approximately equal LD Scores in both populations is certainly
not reasonable for very large values of FST (e.g., if population 1 and population
2 are from different continents) or in scenarios where one population has passed
through a more severe bottleneck than the other (e.g., if population 1 is from Fin-
land and population 2 is from West Africa). However, we are interested in modeling
the population stratification that may remain after principal components analysis
in GWAS that sample from non-admixed populations, and for this purpose the
assumption that ℓj,1 ≈ ℓj,2 seems reasonable, and is supported by the large values
of R2(ℓj,m, ℓj,n) that we observe for all pairs (m,n) of 1000 Genomes European
subpopulations.

For reference, typical values of FST for human populations are ≈ 0.1 for popula-
tions from different continents, FST ≈ 0.01 for populations on the same continent,
and FST < 0.01 for subpopulations within the same country.

2.2. LD in a Mixture of Populations. Suppose j and k are unlinked variants
such that rjk,1 = rjk,2 = 0 and fj is independent of fk. In a mixture of populations,
it will often hold that j and k will be in LD in the whole population even if they are
in equilibrium in both component populations. Let rmix,jk denote the correlation
between SNPs j and k in such a mixture of populations. Conditional on f ,

E[rmix,jk | f ] = E[XijXik | f ](2.1)

=
1

2
(E[XijXik | f, i ∈ P1] + E[XijXik | f, i ∈ P2])

= fjfk.

If we take the expectation over random fj and fj , then E[rmix,jk ] = 0, because fj
and fk are independent with expectation zero. We can use equation 2.1 to compute
the variance,

Var[rmix,jk] = Var[E[rmix,k | f ]] + E[Var[rmix,jk | f ]](2.2)

= E[f2
j f

2
k ] + 0

= E[f2
j ]E[f

2
k ]

= F 2
ST .

Observe that since E[rmix,jk] = 0, Var[rmix,jk] = E[r2mix,jk ]. By equation 1.7, in a
finite sample,

(2.3) E[r̃2mix,jk] ≈ F 2
ST + (1− F 2

ST )/N.

3In particular, we assume that the diagonal entries of V are all equal, or at least uncorrelated
with LD Score. This assumption is unlikely to hold exactly: some parts of the genome drift faster
than others, and the rate of drift may be correlated with LD Score (e.g., as a result of linked
selection). Nevertheless, our simulations with real population stratification show that this is not
likely to be a severe confounder in LD Score regression.
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Thus, the sample LD Score is approximately

E[ℓ̃j ] ≈ ℓj +MF 2
ST +

M(1− F 2
ST )

N
(2.4)

≈ ℓj +MF 2
ST +

M

N
.

Note that we have ignored the case where j and k are linked and Vjk ̸= 0. In this
case, E[f2

j f
2
k ] = F 2

ST + 2F 2
STV

2
jk (from the formula for the double second moments

of a multivariate normal distribution). Even if for some variants j, the number of
variants k such that Vjk > 0 is ≈ 103, this will make a negligible difference in E[ℓ̃j ],
because

∑

k:Vjk>0

2F 2
STV

2
jk < 2000F 2

ST ≪ MF 2
ST when M ≈ 107.

2.3. Model of Stratified Phenotype. To model population stratification, we
model phenotypes as generated by the equation

(2.5) φ = Xβ + S + ϵ,

where X is as described in §2.1, β is as described in §1.1 and where S is an envi-
ronmental stratification4 term defined by

(2.6) Si :=

{

σs/2, i ∈ P1

−σs/2, i ∈ P2.

Finally, ϵ is as described in §1.1, except Var[ϵ] = (1− h2
g − σ2

s ), which assures that
the variance of φ in the population is 15. We compute χ2-statistics as defined in
§1.1. In this section, we compute E[χ2

j ] with the expectation taken over random X,
β, ϵ, f but with S fixed to ensure population stratification.

2.4. Relationship between LD and Stratified χ2-Statistics.

Proposition 2. Under the model described in §2.3, the expected χ2-statistic of
variant j is

(2.7) E[χ2
j ] =

Nh2
g

M
ℓj + 1 + aNFST ,

where a is the expectation of squared difference in mean phenotypes between population1
and population 2.

Proof. Since E[β̂j ] = 0, observe that E[χ2
j ] = N ·Var[β̂j ]. We will obtain the variance

of β̂j via the law of total variance:

Var[β̂j ] = E[Var[β̂j |X ]] + Var[E[β̂j |X ]].(2.8)

Note that one can calculate f from X , so by conditioning on X we also implicitly
condition on f . Unlike in equation 1.4, E[β̂j |X ] ̸= 0, because of confounding from
population stratification. The inner portion of the first term on the right side of
equation 2.8 is the same as in equation 1.5,

4Environmental population stratification occurs when environmental effects are correlated with
ancestry. Genetic population stratification occurs when the alelle frequency of trait-increasing
alleles is correlated with ancestry. Our model includes environmental stratification and a small
amount of genetic stratification from drift. Stronger genetic stratification requires the action of
natural selection on the phenotype in question (or a related phenotype). For a more thorough
discussion of genetic stratification, see [3].

5Note that we implicitly require 1− h2
g − σ2

s ≥ 0.
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Var[β̂j |X ] =
1

N2

(

h2
g

M
XT

j XXTXj +N(1− h2
g)

)

.(2.9)

We can take the expectation over random X (and therefore over random f) using
the result from equation 2.4. Thus,

E[Var[β̂j |X ]] =
1

N2

(

h2
g

M
E[XT

j XXTXj ] +N(1− h2
g)

)

(2.10)

≈
h2
g

M
ℓj + h2

gF
2
ST +

1

N
.

Next, the inner portion of the second term on the right side of equation 2.8 is

E[β̂j |X ] =
1

N
E[XT

j Xβ +XT

j S +XT

j ϵ](2.11)

=
1

N
XT

j S

= fσs.

Since f has variance FST , Var[fσs] = σ2
sFST . Thus,

E[χ2
j ] = N ·Var[β̂j ](2.12)

Nh2
g

M
ℓj + 1 +NFST (σ

2
s + h2

gFST ).

We can interpret the final term, NFST (σ2
S + h2

gFST ), as NFST times the expected
squared mean difference in phenotype between populations, which has environ-
mental component σ2

s and genetic component h2
gFST (if we model X , β and f as

random, there is zero genetic stratification on expectation, but with some small vari-
ance about zero). Precisely, if we let φ̄m denote the mean phenotype in population
m ∈ {1, 2}, then

E[(φ̄1 − φ̄2)] = σ2
s +

M
∑

j=1

[

E[β2
j ]

(

∑

i∈P1

E[X2
ij | i ∈ P1] +

∑

i∈P2

E[X2
ij | i ∈ P2]

)]

(2.13)

= σ2
s + h2

gFST .

Set a := E[(φ̄1 − φ̄2)2]. Then we have

(2.14) E[χ2
j ] =

Nh2
g

M
ℓj + 1 + aNFST ,

as desired. !

3. Variance

The results in §2.4 suggest a method for estimating the confounding term aNFST

from summary statistics: if we regress χ2 against LD Score, then the intercept minus
one is an estimate of aNFST . Because the variance of χ2 increases with LD Score,
we can improve the efficiency of this estimator by weighting the regression by the
reciprocal of the conditional variance function Var[χ2

j | ℓj]. We have derived the
conditional expectation E[χ2

j | ℓj ] without making distributional assumptions on β
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or ϵ; however, we need stronger assumptions6 in order to derive the conditional
variance: we assume that N is large and β ∼ N(0, h2

gI), and ϵ ∼ N(0, (1− h2
g)I)

7.
Then,

β̂j =
1

N
(XT

j Xβ +XT

j ϵ)(3.1)

∼ N(0, h2
gℓj/M + h2

g/N) +N(0, (1− h2
g)/N)

∼ N(0, h2
gℓj/M + 1/N),

where the second line follows from a central limit theorem argument and §.1.2.
Thus, χ2

j = N β̂2
j follows a scaled χ2 distribution with scale factor Nh2

gℓj/M , and
the conditional variance function is

(3.2) Var[χ2
j | ℓj ] =

(

1 +
Nh2

g

M
ℓj

)2

.

Note that this is the correct conditional variance function for GWAS with no con-
founding bias. Since most published GWAS have taken steps to control for popu-
lation stratification, the most likely use case will be a GWAS with at most a small
amount of population stratification.

4. Meta-Analysis

Consider a GWAS for a quantitative trait consisting of t sub-studies (all of
which sample from the same population) with sample sizes N1, . . . , Nk and total
sample size N . For a SNP j, we compute z-scores zj1, . . . , zjt (via linear regression:
zj,s := XT

j,sφs/
√
Ns, where Xj,s is a vector of genotypes for SNP j in study s

and φs is a vector of phenotypes for study s), then perform sample size weighted
meta-analysis with single genomic control to obtain test statistics

(4.1) zj,meta :=
t
∑

s=1

zjs

√

Ns

λsN
,

and

(4.2) χ2
j,meta = z2j,meta.

For meta-analyses without genomic control, set λs = 1 for all s.

6Note that the regression weights do not affect the expectation of the parameter estimates,
only the standard error. Therefore, if the distributional assumptions that we make in order to
derive the conditional variance are violated, it will only increase the standard error. Concretely, if
there are very few causal SNPs, or if the distribution of effect sizes is particularly leptokurtotic,
then Var[χ2

j | ℓj ] will increase with ℓj faster than the function that we derive in this section, and

our estimates will be inefficient.
7Normality is a stronger assumption than is necessary. We only need that β̂j be normally

distributed, which can hold even if β is not normal, so long as N is large and there are sufficiently
many causal SNPs so that 1

N
XT

j Xβ is approximately normal (which would follow from a CLT

argument).
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Proposition 3. Under the model of meta-analysis with genomic control described
above, the expected meta-analysis χ2-statistic of variant j is8

(4.3)
h2
g

MN

(

t
∑

r=1

t
∑

s=1

NrNs√
λrλs

)

ℓj +
1

N

t
∑

s=1

Ns

λs
.

Proof. First, we need to compute E[zjrzjs]. Under a model where genotypes, envi-
ronmental effects and SNP-effects are random, E[zjs] = 0 for all s, so E[zjrzjs] is
equal to Cov[zjr, zjs]. Let X denote the matrix of normalized genotypes in study
r and Y the matrix of normalized genotypes in study s. Let δ denote the vector
of environmental effects in study r and ϵ the vector of environmental effects in
study s. Suppose that there is no sample overlap, and more generally no cryptic
relatedness within or between studies. Further suppose that there is no popula-
tion stratification. Finally, assume that (to a reasonable approximation), the LD
structure in all population from which samples were drawn is approximately equal
(though this allows for sampling variance around the population parameter in each
study). Then,

Cov[zjr, zjs] =
1

N
Cov[(XT

j Xβ +XT

j δ), (Y
T

j Y β + Y T

j ϵ)]

=
1

N

(

Cov[XT

j Xβ, Y T

j Y β] + Cov[XT

j δ, Y
T

j ϵ]
)

.(4.4)

We can evaluate these covariances with the law of total covariance. The term on the
right is zero if we assume no sample overlap (because then δ and ϵ are independent).
The term on the left is

Cov[XT

j Xβ, Y T

j Y β |X,Y ] = XT

j XCov[β,β]Y TYj

=
h2
g

M
XT

j XY TYj .(4.5)

Removing the conditioning on X and Y ,

Cov[XT
j Xβ, Y T

j Y β] = E[Cov[XT
j Xβ, Y T

j Y β |X,Y ]] + Cov[E[XT
j Xβ, |X ],E[Y T

j Y β |Y ]]

= E[Cov[XT

j Xβ, Y T

j Y β |X,Y ]]

=
h2
g

M
E[XT

j XY TYj ]

=
h2
g

M

M
∑

k=1

√

NrNsE[r̂jk,r r̂jk,s]

=

√
NrNsh2

g

M
ℓj,(4.6)

where r̂jk,r denotes the sample correlation between SNPs j and k in study r. Since
we have assumed that the samples in studies r and s are independent, r̂jk,r and r̂jk,s
are independent estimates of the parameter rjk , so E[r̂jk,r r̂jk,s] = E[r̂jk,r ]E[r̂jk,s] =

8Note that the intercept term will generally be less than one. On the other hand, if application
of GC correction in each study was warranted (i.e., if, for each s, all inflation in λs reflects
confounding), and there is no between-study cryptic relatedness (e.g., sample overlap) then the
intercept should be 1.
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r2jk. Then,

E[χ2
j,meta] = E

⎡

⎣

(

t
∑

s=1

zjs

√

Ns

λsN

)2
⎤

⎦

=
1

N

t
∑

r=1

t
∑

s=1

√

NrNs

λrλs
E[zjszjr]

=
1

N

t
∑

r=1

t
∑

s=1

NrNs√
λrλs

(

h2
g

M
ℓj

)

+
1

N

t
∑

s=1

Ns

λs

=
h2
g

MN

(

t
∑

r=1

t
∑

s=1

NrNs√
λrλs

)

ℓj +
1

N

t
∑

s=1

Ns

λs
.(4.7)

!
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Supplemental Figures 

Supplementary Figure 1: Intercepts from simulations with varying heritability 
 

 
The x-axis displays different heritabilities specified for simulations, and the y-axis displays LD Score 
regression intercepts from 100 simulation replicates for each value of heritability. The red line shows 
the expected LD Score regression intercept in the absence of confounding bias. For all simulations, 
1% of SNPs were causal. 1-3 
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Supplementary Figure 2: Slopes from simulations with varying heritability 

 
The x-axis displays different heritabilities specified for simulations, and the y-axis displays LD Score 
regression slopes from 100 simulation replicates for each value of heritability. For all simulations, 1% 
of SNPs were causal. 
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Supplementary Figure 3: Intercepts from simulations with various proportions of causal 
SNPs 

 
The x-axis displays different proportions of causal SNPs specified for simulations, and the y-axis 
displays LD Score regression intercepts from 100 simulation replicates for each value of the 
proportion of causal SNPs. For all simulations, the heritability was 0.9. 
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Supplementary Figure 4: Slopes from simulations with various proportions of causal SNPs 

 
 
The x-axis displays different proportions of causal SNPs specified for simulations, and the y-axis 
displays LD Score regression slopes from 100 simulation replicates for each value of the proportion 
of causal SNPs. For all simulations, the heritability was 0.9. 
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Supplementary Figure 5: Estimated standard error from simulations with various proportions 
of causal SNPs

 
The x-axis displays different proportions of causal SNPs specified for simulations, and the y-axis 
displays block jackknife estimates of the standard error of the intercept from each of 100 simulation 
replicates for each proportion of causal SNPs. For all simulations, the heritability was 0.9. 
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Supplementary Figure 6: Simulations with frequency-dependent architecture 

 
The x-axis describes the simulate relationship between minor allele frequency and effect size. 
Precisely, per-normalized genotype effects for 10,000 causal variants were drawn from!!(0, (!(1 −
!))!), where p is MAF and x is the x-coordinate. To prevent singleton and doubleton variants from 
having extreme effects for large negative values of x, we drew the effect sizes for variants with MAF 
< 1% from !(0,0.0099!). The red line is the mean !! among the common HapMap 34 variants 
retained for LD Score regression. The green line is the mean !! among variants with MAF < 1%. 
The black line is the LD Score regression intercept. Each data point is the average across 10 
simulation replicates with randomly chosen effects. Our model holds when x=0, which corresponds 
to moderate negative selection on the phenotype in question, similar to a typical disease phenotype. 
x=1 is an appropriate model for a selectively neutral phenotype. Values of x outside the range [0,1] 
represent extreme genetic architectures.
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Supplementary Figure 7: Simulation where all causal variants are rare 
 

 
 

LD Score regression plot for a simulation with 1000 Swedish samples and ~700,000 SNPs on 
chromosome 1 where all causal variants had MAF < 1%. Each point represents an LD Score 
quantile, where the x-coordinate of the point is the mean LD Score of variants in that quantile and 
the y-coordinate is the mean !! of variants in that quantile. Colors correspond to regression weights, 
with red indicating large weight. The black line is the LD Score regression line. The slope of the LD 
Score regression line is -3.2E-4, which is statistically significantly less than zero (block jackknife 
p=0.013). 
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Supplementary Figure 8a: LD Score plot for IBD 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8b: LD Score plot for Ulcerative Colitis 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8c: LD Score plot for Crohn’s Disease  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8d: LD Score plot for ADHD  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8e: LD Score plot for Bipolar Disorder  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8f: LD Score plot for PGC Cross-Disorder Analysis 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8g: LD Score plot for Major Depression 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8h: LD Score plot for Rheumatoid Arthritis  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8i: LD Score plot for Coronary Artery Disease  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 

 
  

1.05

1.10

1.15

1.20

1.25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

50 100 150 200 250
LD Score Bin

M
ea

n 
χ2

Regression
Weight

●

●

●

●

●

0.2
0.4
0.6
0.8
1.0



Supplementary Figure 8j: LD Score plot for Type-2 Diabetes 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8k: LD Score plot for BMI-Adjusted Fasting Insulin 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8l: LD Score plot for Fasting Insulin 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8m: LD Score plot for College  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8n: LD Score plot for Years of Education  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8o: LD Score plot for Cigarettes Per Day 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8p: LD Score plot for Ever Smoked?  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8q: LD Score plot for Former Smoker? 
 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8r: LD Score plot for Smoking Age of Onset 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8s: LD Score plot for Femoral Neck Bone Mineral Density 

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8t: LD Score plot for Lumbar Spine Bone Mineral Density  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8u: LD Score plot for Waist-Hip Ratio  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8v: LD Score plot for Height  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 8w: LD Score plot for Body Mass Index  

 
Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD 
Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that 
quantile. Colors correspond to regression weights, with red indicating large weight. The black line is 
the LD Score regression line. 
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Supplementary Figure 9: LD Score estimates with varying window size

 
The x-axis displays the window radius used for estimating LD Score. The y-axis displays the mean 
LD Score among variants with sample MAF > 1% in all four 1000 Genomes European 
subpopulations. Each colored line represents one of the four 1000 Genomes European 
subpopulations: Europeans (EUR, 378 individuals), Utah Residents with Northern and Western 
European Ancestry (CEU, 85 individuals), British in England and Scotland (GBR, 88 individuals), 
Finnish in Finland (FIN, 93 individuals) and Toscani in Italia (TSI, 98 individuals). The line labeled 
AVG is the mean of the four subpopulation LD Scores, and is almost entirely obscured by the EUR 
line.
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Supplementary Tables 
 

Supplementary Table 1: Heritability Estimates 
 
Phenotype !!"#!  !!"#!  SE Sample Prevalence Population Prevalence !!"#$!  !!"#$!  SE 
Crohn’s 0.763 0.043 0.285 0.00325 0.405 0.023 
Ulcerative Colitis 0.416 0.042 0.254 0.00255 0.227 0.023 
Schizophrenia 0.994 0.015 0.447 0.0106 0.555 0.008 
Major 
Depression 

0.342 0.028 0.493 0.1506 0.409 0.033 

Bipolar  0.951 0.039 0.443 0.0106 0.531 0.022 
 
LD Score regression heritability estimates for phenotypes that did not employ any GC correction (GC correction at the individual study 
level will bias the heritability estimate downwards). Standard errors were obtained as in table 1. These are estimates of the heritability 
explained by all 1000 Genomes SNPs (h2(1kG) ), obtained by multiplying the regression slope by M/N, where N:=sample size and M is 
about 15 million. If the average rare SNP in 1000 Genomes explains less phenotypic variance than the average common SNP, then a 
smaller value of M would be more appropriate, and the estimates in this table will be biased upwards. Relaxing these assumptions in order 
to obtain a robust estimate h2(1kG) is a direction for further research; however, we note that the LD Score regression intercept is robust to 
these assumptions. We report heritability on the observed scale (ℎ!"#! )!and also transformed to the liability scale  (ℎ!"#$! )!using the 
prevalence estimates listed in the prevalence column.  For some phenotypes (e.g., Crohn’s disease, which has been increasing in 
prevalence5), it is difficult to obtain accurate prevalence estimates, so liability scale heritability estimates should be interpreted cautiously.  



 
 

Supplementary Table 2: Descriptions of cohorts for simulations with population stratification 
 
 
Abbreviation Origin Principal Investigator Controls 
clo3 Cardiff, UK Walters, J 945 
cou3 UK O’Donovan, M 544 
egcu Estonia  Esko, T 1,177 
swe5 Sweden Sullivan, PF 2,617 
swe6 Sweden Sullivan, PF 1,219 
umeb Umeå, Sweden Adolfsson, R 584 
umes Umeå, Sweden Adolfsson, R 713 
 
Supplementary table 1 describes the seven PGC Schizophrenia control cohorts used for simulation 
with population stratification. All cohorts were genotyped on the Illumina Omni Express array; only 
unaffected individuals (controls) and directly genotyped SNPs post-QC (between approximately 
600,000 and 700,000 SNPs, depending on cohort) were retained for simulations. In total genotypes 
for 9,135 individuals were incorporated into the simulations with pure population stratification 
 
 
  



Supplementary Table 3a: Performance of genomic control and LD Score regression intercept 
in simulations with continental-scale population stratification 
 
  
Population 1 Population 2 !!"  Intercept (!"#$%&$'# − !)/(!!" − !) 
cou3 clo3 1.093 1.07 0.748 
egcu clo3 9.413 8.508 0.892 
egcu cou3 6.604 6.045 0.900 
swe5 clo3 3.582 3.445 0.947 
swe5 cou3 2.767 2.635 0.925 
swe5 egcu 9.384 8.767 0.926 
swe6 clo3 3.744 3.600 0.947 
swe6 cou3  3.267 4.238 1.428 
swe6 egcu 6.880 6.413 0.920 
swe6 swe5 1.712 1.703 0.987 
umeb clo3 3.635 3.614 0.992 
umeb cou3 2.633 2.879 1.151 
umeb egcu 4.603 4.764 1.045 
umeb swe5 2.145 2.313 1.147 
umeb swe6 1.278 1.880 3.162* 
umes clo3 7.316 7.389 1.012 
umes cou3 4.959 5.572 1.155 
umes egcu 9.304 9.742 1.053 
umes swe5 6.900 7.328 1.072 
umes swe6 4.172 4.443 1.085 
umes umeb 3.192 3.218 1.012 

Mean (SD)   1.017 (0.14)* 
  
This table compares the performance of !!"  and the LD Score regression intercept in simulations 
with continental-scale population stratification. In each simulation, individuals from population 1 
were labeled cases and N2 individuals from population 2 were labeled controls. We then computed 
association statistics for variants in the intersection of the subset of HapMap 3 variants used for LD 
Score regressions on real data (Online Methods) and variants on the Illumina Omni Express array 
(approx. 450,000 variants in each simulation).  
 
The conclusion is that the LD Score regression intercept gives approximately the same answer as !!! 
in simulations with pure population stratification, and so would be appropriately conservative if used 
as a correction factor.  
 
* The mean and SD are computed with the umeb/swe6 outlier removed. 
  



Supplementary Table 3b. Correlation between LD Score and FST in simulations with 
continental-scale population stratification 
 
 
Population 1 Population 2 Signed R-squared 
cou3 clo3 5.00e-05 
egcu clo3 8.28e-04 
egcu cou3 7.41e-04 
swe5 clo3 1.61e-04 
swe5 cou3 2.02e-04 
swe5 egcu 4.29e-04 
swe6 clo3 1.81e-04 
swe6 cou3 -1.12e-05 
swe6 egcu 4.32e-04 
swe6 swe5 5.95e-05 
umeb clo3 1.07e-04 
umeb cou3 5.05e-05 
umeb egcu 2.55e-04 
umeb swe5 1.92e-06 
umeb swe6 -6.60e-05 
umes clo3 5.22e-06 
umes cou3 6.79e-09 
umes egcu 7.26e-05 
umes swe5 -2.19e-06 
umes swe6 -5.23e-06 
umes umeb -7.52e-06 
 Mean 2.51e-4 
 
Column descriptions. Population 1 and population 2 are the two populations involved in the 
simulations. Signed R-squared is the squared Pearson correlation coefficient between !!" (between 
the two populations in the simulation) and LD Score multiplied by the negative one if the (non-
squared) correlation is negative.  
  



Supplementary Table 3c Heritability and intercept for a confounded GWAS with continental-
scale population stratification 
 
 
Population 1 Population2 Heritability Intercept Lambda 
cou3 clo3 0.140 1.397 1.531 
egcu clo3 0.063 1.454 1.509 
swe6 clo3 0.033 1.476 1.502 
swe5 clo3 0.034 1.475 1.502 
umeb clo3 0.027 1.480 1.484 
umes clo3 0.009 1.493 1.487 
swe5 cou3 0.044 1.468 1.506 
umes cou3 0.007 1.495 1.429 
egcu cou3 0.063 1.454 1.504 
swe6 cou3 -0.096 1.570 1.399 
umeb cou3 0.026 1.481 1.418 
swe5 egcu 0.048 1.465 1.502 
umes egcu 0.027 1.480 1.456 
swe6 egcu 0.051 1.463 1.503 
umeb egcu 0.051 1.463 1.443 
swe6 swe5 0.031 1.477 1.483 
umes swe5 0.002 1.498 1.465 
umeb swe5 0.007 1.495 1.431 
umeb swe6 -0.213 1.656 1.208 
umes swe6 -0.001 1.500 1.461 
umes umeb -0.005 1.504 1.498 
 Mean 0.017 1.488 1.463 
 
This table puts the slopes from the simulations with continental-scale population stratification on an 
interpretable scale by transforming all parameters to the scale of a GWAS with 100,000 samples and 
mean chi-square of 1.5, where all inflation in the mean chi-square comes from population 
stratification. All estimates of h2(1kG) use M=15 million. For comparison, the aggregate LD Score 

estimator of h2(1kG), ℎ! = !(!!!!)
!!  , which is representative of heritability estimators that are highly 

susceptible to population stratification, would give a heritability estimate of 0.68 in all cases, 
assuming mean LD Score = 110. The reason why the LD Score regression slope is not equal to zero 
is likely because linked selection introduces a small correlation between LD Score and !!" . The 
conclusion is that in a worst-case scenario (pure population stratification), LD Score regression 
misattributes on average a small proportion of stratification to heritability, but nevertheless performs 
many times better than existing estimators (upward bias of 0.017 for LD Score regression vs. 
approximately 0.68 for other methods). 
  



Supplementary Table 4a: Performance of genomic control and LD Score regression intercept 
in simulations with national-scale population stratification 
 
 
Population PC !!"  Intercept (!"#$%&$'# − !)/(!!" − !) 
clo3 1 2.001 2.821 1.818 
clo3 2 1.277 1.318 1.151 
clo3 3 1.293 1.297 1.014 
cou3 1 1.079 1.062 0.781 
cou3 2 1.062 1.043 0.697 
cou3 3 1.065 1.046 0.711 
egcu 1 1.814 1.763 0.937 
egcu 2 1.525 1.478 0.911 
egcu 3 1.395 1.476 1.203 
swe5 1 2.704 2.700 0.998 
swe5 2 1.409 1.369 0.904 
swe5 3 1.327 1.336 1.028 
swe6 1 2.735 2.686 0.972 
swe6 2 2.468 2.426 0.971 
swe6 3 1.511 1.489 0.957 
umeb 1 1.88 1.838 0.953 
umeb 2 1.847 1.845 0.997 
umeb 3 1.435 1.410 0.943 
umes 1 2.039 1.958 0.922 
umes 2 1.583 1.540 0.926 
umes 3 1.328 1.294 0.896 

Mean (SD)  0.985 (0.224) 
 
 
This table compares the performance of !!"  and the LD Score regression intercept in simulations 
with national-scale population stratification. We LD-pruned the SNPs so that no SNPs on the same 
chromosome had R2 > 0.02, then computed the top three principal components. We then used these 
principal components as phenotypes and computed association statistics for the same set of variants 
as in the simulations described in supplementary table 2. 
 
The conclusion is that the LD Score regression intercept gives approximately the same answer as !!" 
in simulations with pure population stratification, and so would be appropriately conservative if used 
as a correction factor.  
  



Supplementary Table 4b. Correlation between LD Score and FST in simulations with 
national-scale population stratification 
 
 
Population PC Signed R-Squared 
clo3 1 -2.96e-04 
clo3 2 1.85e-05 
clo3 3 5.03e-06 
cou3 1 2.71e-05 
cou3 2 4.75e-05 
cou3 3 4.73e-05 
egcu 1 3.74e-05 
egcu 2 1.17e-04 
egcu 3 3.23e-05 
swe5 1 1.94e-04 
swe5 2 8.46e-05 
swe5 3 8.79e-08 
swe6 1 3.37e-05 
swe6 2 1.30e-04 
swe6 3 4.49e-05 
umeb 1 4.49e-05 
umeb 2 1.44e-05 
umeb 3 2.25e-05 
umes 1 1.44e-04 
umes 2 2.18e-05 
umes 3 9.09e-05 
 Mean: 4.10e-05 
 
Column descriptions. Population is the population and PC is the principal component used to 
simulate population stratification in the simulations and population 2. Signed R-squared is the 
squared Pearson correlation coefficient between !!" (between the two populations in the simulation) 
and LD Score multiplied by the negative one if the (non-squared) correlation is negative.  
 
 
  



Supplementary Table 4c: Heritability and intercept for a confounded GWAS with national-
scale population stratification 
 
 
Population  PC Heritability Intercept Lambda 
clo3 1 -0.178 1.630 1.347 
clo3 2 0.048 1.465 1.404 
clo3 3 0.031 1.477 1.471 
cou3 1 0.144 1.395 1.505 
cou3 2 0.254 1.313 1.450 
cou3 3 0.229 1.332 1.467 
egcu 1 0.035 1.474 1.506 
egcu 2 0.068 1.450 1.494 
egcu 3 0.043 1.468 1.389 
swe5 1 0.039 1.472 1.473 
swe5 2 0.076 1.444 1.491 
swe5 3 0.024 1.483 1.469 
swe6 1 0.017 1.488 1.502 
swe6 2 0.036 1.474 1.488 
swe6 3 0.047 1.466 1.487 
umeb 1 0.031 1.477 1.501 
umeb 2 0.014 1.490 1.491 
umeb 3 0.042 1.469 1.498 
umes 1 0.047 1.466 1.505 
umes 2 0.037 1.473 1.510 
umes 3 0.082 1.440 1.490 
 Mean 0.056 1.459 1.473 
 
This table is similar to supplementary table 2c it puts the slopes from the simulations with national-
scale population stratification on an interpretable scale by transforming all parameters to the scale of 
a GWAS with 100,000 samples and mean chi-square of 1.5 where all inflation in the mean chi-square 
comes from population stratification along the relevant principal component. As in supplementary 
table 4, the aggregate estimator would give a h2(1kG) estimate of 0.68, which is similar to the result 
that one would obtain with Haseman-Elston regression or linear mixed models (using M=15 
million). The conclusions are similar to supplementary table 4. 
 
 
 
 
  
 
 
 
 
 
  



Supplementary Table 5: Simulations with both bias and polygenicity 
 
 
Bias Intercept (SD) Null !! (SD) Null !!/Intercept (SD) 
Relatedness 1.46 (0.02) 1.45 (0.02) 1.00 (0.00) 
Stratification 1.53 (0.17) 1.48 (0.15) 0.97 (0.01) 
 
Column descriptions. The column labeled bias identifies the source of bias, either cryptic relatedness 
(from the Framingham Heart Study) or population stratification (from introducing an environmental 
stratification term correlated with the first PC of the WTCCC2 data). Intercept is LD Score 
regression intercept, with the standard deviation (SD) across five simulations in parentheses. Null !! 
is the mean !! among SNPs on the opposite halves of chromosomes from causal SNPs, with SD 
across five simulations in parentheses. Since null SNPs are not in LD with causal SNPs, the mean !! 
among null SNPs precisely quantifies the mean inflation in !!-statistics that results from bias. Null 
!!/Intercept is equal to the mean !! among null SNPs divided by the LD Score regression 
intercept, with the SD across five simulations in parentheses. Null !!/Intercept should be 
approximately equal to one if the LD Score regression intercept is accurately estimating the mean 
inflation in test statistics that results from bias.



Supplementary Table 6: Simulations with Ascertained Binary Phenotypes 
 
 
Sample Size Prevalence !!!!(SD) Intercept (SD) !!!" (SD) !! (SD) 
10000 0.01 0.804 (0.027) 0.995 (0.048) 2.253 (0.063) 2.452 (0.025) 
10000 0.1 0.793 (0.041) 1.006 (0.04) 1.688 (0.031) 1.761 (0.015) 
1000 0.01 0.772 (0.121) 1.005 (0.019) 1.139 (0.014) 1.145 (0.015) 
1000 0.1 0.729 (0.226) 1.007 (0.027) 1.083 (0.03) 1.076 (0.013) 
 
 
This table displays results from simulations with ascertained binary phenotypes following the liability 
threshold model. In all simulation replicates, the true heritability (of liability, in the population) was 
0.8, the effective number of independent SNPs (defined as !!"" ≔ !/!) was 10,000 and the 
proportion of cases in the sample was 0.5. All SNPs were causal, with effect sizes (precisely, per-
normalized genotype effects on liability) drawn i.i.d. from a normal distribution. Each entry in the 
table represents 20 simulation replicates. The column labeled !!! lists the estimated heritability of 
liability in the population from the LD Score regression slope. The column labeled intercept lists LD 
Score regression intercepts. There was no population stratification in these simulations, so the 
intercept should be close to one. The columns !!!" and !!!list the genomic control inflation factor 
and mean !! computed from a perfectly LD-pruned set of variants. 
 



Supplementary Table 7: Simulations with frequency-dependent genetic architecture 
 
Exponent Intercept (SD) !! (SD) 
-3 1.007 (0.013) 1.011 (0.008) 
-2 1.006 (0.014) 1.013 (0.008) 
-1 1.003 (0.014) 1.023 (0.009) 
-0.5 1.001 (0.013) 1.037 (0.009) 
-0.25 1.000 (0.012) 1.048 (0.008) 
0 0.998 (0.011) 1.059 (0.007) 
0.25 0.997 (0.011) 1.070 (0.006) 
0.5 0.996 (0.011) 1.079 (0.006) 
1 0.994 (0.012) 1.091 (0.007) 
2 0.991 (0.013) 1.101 (0.009) 
3 0.989 (0.013) 1.105 (0.010) 
  
 
Supplementary table 5 describes simulations in which per-normalized genotype effects (precisely, if X 
denotes a matrix of genotypes normalized to mean zero and variance one, the per-normalized 
genotype effects are a vector ! such that !" is equal to the additive genetic component of the 
phenotype) for 10,000 randomly chosen causal variants were drawn from!!(0, (!(1 − !))!), where 
p is MAF and x is the entry in the column labeled exponent. To prevent singleton and doubleton 
variants from having extreme effects for large negative values of x, we drew the effect sizes for 
variants with MAF < 1% from !(0,0.0099!). Our model holds when x=0, which corresponds to 
moderate negative selection on the phenotype in question, similar to a typical disease phenotype. x=1 
is an appropriate model for a selectively neutral phenotype. Values of x outside the range [0,1] 
represent extreme genetic architectures. Standard errors are empirical standard errors across 10 
replicates with randomly chosen causal variants and effect sizes.  
  



Supplementary Table 8a: Summary Statistic Metadata, Quantitative Trait 
 
 
Citation Trait N Public Ref 
Heid, et. al., Nat Genet, 2010 Waist-Hip Ratio 113,636 Yes 7 
Lango Allen, et. al., Nature, 2010 Height 183,727 Yes 8 
Speliotes, et. al., Nat Genet, 2010 Body Mass Index 249,796 Yes 9 
TAG Consortium, Nat Genet, 
2010 

Smoking 74,053 Yes 10 

International Consortium for 
Blood Pressure GWAS, Nature, 
2011 

Diastolic / Systolic 
Blood Pressure 

69,395  Yes 11 

Estrada et. al., Nat Genet, 2011 Bone Mineral Density 32,961 Yes 12 
Manning et. al., Nat Genet, 2012 Fasting Insulin 51,750 Yes 13 
Rietveld, et. al., Science, 2013 Years of Education 126,559 Yes 14 
 
Column descriptions. All columns are self-explanatory, except the column labeled N counts the 
number of individuals in the discovery phase of the GWAS, not including replication samples. The 
column labeled public indicates whether the summary statistics are publicly available for download 
(see URLs). 



Supplementary Table 8b: Summary Statistic Metadata, Case/Control 
 
 
Citation Trait Cases Controls Public Ref 
Neale, et. al., J Am Acad Adolesc 
Psychiatry, 2010 

ADHD 896 2455 Yes 15 

Stahl, et. al., Nat Genet, 2010 Rheumatoid Arthritis 5,539 20,169 Yes 16 
PGC Bipolar Working Group, Nat 
Genet, 2011 

Bipolar Disorder 7,481 9,250 Yes 17 

Schunkert et. al., Nat Genet, 2011 Coronary Artery Disease 22,233 64,762 Yes 18 
Jostins, et. al., Nature, 2012 Inflammatory Bowel 

Disease 
12,882 21,770 No 19 

Jostins, et. al., Nature, 2012 Crohn’s Disease 5,956 14,927 Yes* 19 
Jostins, et. al., Nature, 2012 Ulcerative Colitis 6,968 20,464 Yes* 19 

Morris, et. al., Nat Genet, 2012 Type 2 Diabetes 12,171 56,862 Yes 20 
Cross-Disorder Group, Lancet, 
2013 

PGC Cross-Disorder 33,332 27,888 Yes 21 

Ripke, et. al., Mol Psych, 2013 Major Depression 9,240 9,519 Yes 22 
O’Donovan, et. al., in preparation Schizophrenia 31,335** 38,765** Yes 23 
Rietveld, et. al., Science, 2013 College 22,044*** 73,383 Yes 14 
 
Column descriptions. All columns are self-explanatory, except the columns labeled cases and controls 
note the number of cases and controls in the discovery phase of the GWAS, not including replication 
samples. The column labeled public indicates whether the summary statistics are publicly available 
for download (see URLs) 
* These summary statistics may be meta-analyzed with Immunochip data, which is not appropriate 
for LD Score regression. 
** This figure counts only European samples. The full GWAS includes several thousand Asian 
samples, which were excluded from the LD Score regression, because the 1000 Genomes European 
LD Score is not representative of LD patterns in Asian populations. 
*** Here cases are individuals with college education, controls those without. 
 
 



Supplementary Table 9: Simulation with intergenic GC correction 
 
  
Annotation Mean !! Lambda 

Null (chromosome 2) 1.0098 1.0082 
Within 100 kB of a coding 
exon on chromosome 1 

1.4592 1.2511 

More than 100 kB from a 
coding exon on 
chromosome 1 

1.2505 1.0817 

 
This table describes a simulation with 1000 Swedish samples and ~700,000 best-guess imputed 
genotypes on chromosome 1. We simulated phenotypes by assigning causal effects to only SNPs 
within coding exons on chromosome 1. We then computed association statistics for variants within 
100 kB of a gene, more than 100 kB from a gene and for null SNPs on chromosome 2. Because of 
long-range linkage disequilibrium, lambda (i.e., !!") is significantly elevated for intergenic SNPs even 
though there is no bias in the test statistics, as can be seen from the fact that the test statistics of null 
SNPs are not inflated. 



Supplementary Table 10: R2 matrix of LD Scores with varying window sizes 
 
 

cM 0.01 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 
0.001 0.6677 0.4249 0.3769 0.3642 0.3543 0.3505 0.3504 0.3494 0.3489 0.3485 0.3485 0.3479 
0.01  0.7553 0.6929 0.6732 0.6603 0.6530 0.6523 0.6502 0.6487 0.6476 0.6479 0.6463 
0.1   0.9651 0.9538 0.9424 0.9359 0.9347 0.9328 0.9314 0.9303 0.9300 0.9289 
0.25    0.9899 0.9856 0.9810 0.9801 0.9786 0.9773 0.9763 0.9764 0.9751 
0.5     0.9955 0.9934 0.9930 0.9920 0.9911 0.9904 0.9904 0.9895 
0.75      0.9981 0.9980 0.9973 0.9965 0.9960 0.9961 0.9952 
1       0.9995 0.9993 0.9990 0.9986 0.9985 0.9980 
1.25        0.9996 0.9993 0.9990 0.9990 0.9986 
1.5         0.9997 0.9995 0.9994 0.9992 
1.75          0.9997 0.9995 0.9995 
2           0.9996 0.9997 
2.25            0.9995 

 
Each entry is the squared Pearson correlation between the LD Score estimated from the 1000 Genomes Project European reference panel with the 
window radii listed across the top row and the leftmost column in units of centiMorgans (cM). We chose to use the 1 cM LD Score for all LD Score 
regressions applied to real data, so the squared correlations with the 1 cM LD Score are in bold 
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